Discretisation of diffusive fluxes on hybrid grids
نویسندگان
چکیده
The main approaches of discretising the viscous operator of fluid flow on hybrid meshes are analysed for accuracy, consistence, monotonicity and sensitivity to mesh quality. As none of these approaches is fully satisfactory, a novel method using an approximated finite element approach is presented and analysed. The methods are compared for the linear heat equation and the Navier-Stokes equations. While the novel approximated finite-element method performs significantly better for the linear heat equation, a stabilised edge-based method performs equally well for the considered test-cases for the Navier-Stokes equations.
منابع مشابه
A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملAn Extension of Energy Stable Flux Reconstruction to Unsteady, Non-linear, Viscous Problems on Mixed Grids
This paper extends the high-order Flux Reconstruction (FR) approach to the treatment of non-linear diffusive fluxes on triangles. The FR approach for solving diffusion problems is reviewed on quadrilaterals and extended for triangles, allowing the treatment of mixed grids. In particular, this paper examines a subset of FR schemes, referred to as VincentCastonguay-Jameson-Huynh (VCJH) schemes, w...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملCompact finite volume schemes on boundary-fitted grids
The paper focuses on the development of a framework for high-order compact finite volume discretization of the threedimensional scalar advection–diffusion equation. In order to deal with irregular domains, a coordinate transformation is applied between a curvilinear, non-orthogonal grid in the physical space and the computational space. Advective fluxes are computed by the fifth-order upwind sc...
متن کاملA Discontinuous Galerkin Method for Diffusion Based on Recovery
We present the details of the recovery-based DG method for 2-D diffusion problems on unstructured grids. In the recovery approach the diffusive fluxes are based on a smooth, locally recovered solution that in the weak sense is indistinguishable from the discontinuous discrete solution. This eliminates the introduction of ad hoc penalty or coupling terms found in traditional DG methods. Crucial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010